NIP IT!: Non-Invasive Artificial Intelligence-Based Platform MonIToring Program (NIP IT!)
Observacional
Fase no especificada
Princess Margaret Cancer Centre
Patients who have undergone curative treatment may be at risk of relapse. This study will collect, annotate, and sequence biospecimens (blood, stool, and tissue) from patients across different tumor types to detect molecular residual disease (MRD) before metastases become radiographically or clinically detectable. This will allow for early cancer interception, and hopefully prolong relapse-free survival across tumor types.
Mostrar descripción detallada
Categoría de tratamiento
Erforderliche Mutationen
Ninguna
Ensayo iniciado
2022-07-20
Última actualización por el patrocinador
2025-07-02
Finalización estimada
2027-06-01
Elegibilidad
Criterios de inclusión
1. Patients with histological confirmation of a solid tumor.
2. Patients must have early stage or locally advanced disease that is planned for or have undergone curative treatment.
3. Patient must be ≥ 18 years old.
4. All patients must have signed and dated an informed consent form.
Criterios de exclusión
Ninguno
¿Cree usted que este ensayo clínico se muestra por error?
Detalles del diseño
AsignaciónN/A
Modelo de intervenciónN/A
EnmascaramientoN/A
Número a inscribir500
Brazos e Intervenciones
Brazos
Intervenciones
Tipo: N/A
Descripción: Patients with early stage or locally advanced disease that is planned for or have undergone curative treatment will have next-generation sequencing (NGS)-based ctDNA analysis performed on blood samples to determine minimal residual disease (MRD). Blood samples, stool samples, and additional archival/fresh tumor specimens will be collected for banking and future research purposes.
Intervenciones:
Medidas de resultado
Medidas de resultado primarias
Change from Baseline in ctDNA collected from biospecimensThrough study completion, an average of 4 years
Next-generation sequencing based ctDNA analysis
Medidas de resultado secundarias
Number of participants that are identified as high risk of clinical relapse with artificial intelligence (AI) and machine learning algorithmsThrough study completion, an average of 4 years
Guardar ensayo
Compartir ensayo por correo electrónico
Descargar ensayo
¿Interesado en participar?
Obtenga más información sobre este ensayo y si puede ser elegible para participar.
¿Cree usted que este ensayo clínico se muestra por error?
Reportar ensayo
Descargar ensayo
Sitios del ensayo
Este estudio tiene 1 sitio de ensayo
Princess Margaret Cancer Centre Toronto, Ontario, CA